
CMPUT690 Term Project
Fingerprinting using Polynomial

(Rabin’s method)

Calvin Chan Hahua Lu

December 4, 2001

2

Executive Summary

The purpose of this project is to implement the Rabin’s method
of fingerprinting using irreducible polynomials. This project
team has successfully implemented the method and test run on
a given dataset. Test results show that the time efficiency of this
method is comparable to the other well known hashing func-
tions while outperfoming them in the sense of lower or even no
collision occurences.

3

4

Table of Contents

1 Introduction 7

1.1 Reference . 7

1.1.1 Terms of Reference . 7

1.1.2 Project Team Members . 7

1.2 Motivation . 7

1.3 Objectives . 8

2 Rabin’s method 9

2.1 Method Outline . 9

2.1.1 The Scheme . 9

2.1.2 Bound of Error . 9

2.1.3 Properties and Characteristics . 11

2.2 Irreducible Polynomials . 12

2.2.1 Criteria . 12

2.2.2 Algorithm for generation . 12

2.3 An Implementation . 14

2.3.1 Mathematical Work . 14

2.3.2 Implementation Issues . 17

2.3.3 Implementation Scheme . 23

3 Hashing Algorithms 25

5

3.1 General Considerations . 25

3.2 Scheme djb2 . 25

3.3 Scheme sdbm . 26

3.4 Horner’s Rule . 26

3.5 Conversion function url2pid() . 26

4 The Experiment 27

4.1 Test Objects . 27

4.2 Outline of Experiment . 27

4.3 Details of the Experiment . 28

5 Results and Analyses 29

5.1 Test Results . 29

5.2 Analyses . 33

5.2.1 Expected Errors . 33

5.2.2 Actual Results . 33

5.2.3 Comparisons . 34

5.2.4 Fingerprint method . 34

6 Conclusion 35

6.1 Conclusions . 35

6.2 Related and Future Work . 35

6.2.1 Related Work . 35

6.2.2 Future Work . 36

7 Source Codes 37

7.1 Source Codes for Fingerprinting . 37

7.2 Source Codes for “url2pid” . 45

6

Chapter 1

Introduction

1.1 Reference

1.1.1 Terms of Reference

This term project is carried out with the purpose of fulfilling the course requirement of
CMPUT690.

CMPUT690 is a graduate course in Advanced Database Systems offered by the Department
of Computing Science, Faculty of Science, University of Alberta. The instructor of the
course is Professor Davood Rafiei.

1.1.2 Project Team Members

The project team consists of the following team members:

• Calvin Chan

• Hai-Hua Lu

1.2 Motivation

Traditionally, a hashing function is used to map a character string of undetermined length
to a storage address. The mapping is done by computing the residue of that string, viewed
as a large integer, modulop - a prime number[1].

7

Since this is a mapping from an unbounded domain into a finite range of integers, it would
be very difficult to devise a good hashing function that will produce a set of distinct mapped
values with minimal chance of collisions. This is especially true when the set of character
strings to be mapped is of a huge size.

In 1981, Michael O. Rabin published a paper [1] descibing a fingerprinting method using
polynomials. It is claimed that the method provides efficient mapping that has little chance
of collision even with huge dataset.

1.3 Objectives

In this project, it is intended to achieve the followings:

§ to implement the Rabin’s method and to test it against a dataset

§ to examine the relationship between the percentage of collisions (distinct strings with
the same fingerprint) and the degree of the chosen irreducible polynomial

§ to compare the effectiveness of using Rabin’s method with that of using hashing
functions

8

Chapter 2

Rabin’s method

2.1 Method Outline

2.1.1 The Scheme

Suppose the character stringA is a bit string containingm bits [b1, . . . , bm]. It is then
associated to a polynomial of degree(m− 1) in indeterminatet as follows.

A(t) = b1t
m−1 + b2t

m−2 + . . . + bm−1t + bm

Given a polynomialP(t) of degreek,

P(t) = a1t
k + a2t

k−1 + . . . + ak−1t + ak

the residuef(t) = A(t) mod P(t) will be of degree(k − 1).

In Rabin’s fingerprinting method, an irreducible polynomial is used forP(t). More details
about irreducible polynomials can be found in section 2.2. Since we are dealing with bit
strings, all the coefficients ofA(t) are inZ2. ThusP(t) will be chosen usingai’s in Z2.
With this in mind, the fingerprinting function is defined as follows:

Definition Given a character stringA, the fingerprint ofA is

f(A) = A(t) mod P(t) (1)

2.1.2 Bound of Error

In his paper [1], Rabin finds a bound for error in the steps as follows:

9

1. The number of irreducible polynomialP(t) of degreek is

2k − 2

k
≈ 2k

k
.

2. Given a datasetS containingn character strings of maximum lengthm bits, construct
a polynomial

Q(t) =
∏

{A,B∈S}

(A(t)− B(t))

.

3. If degree ofQ(t) = degQ, then

degQ =
∑

{A,B∈S}

deg (A(t)− B(t))

≤
∑

{A,B∈S}

max{deg A(t), deg B(t)}

≤
∑

{A,B∈S}

m

≤ n2m

4. Maximum number of irreducible factors of degreek of Q(t) = degQ
k

≤ n2m
k

.

5. Forf(A) = f(B) givenA 6= B, one must haveP(t) | (A(t)−B(t)) andP(t) | Q(t).

6. Probability of making an error = probability of picking a factor ofQ(t)

7. The bound of error is estimated as

Pr{f(A) = f(B) | A 6= B} =
degQ

k

/2k − 2

k

≈ degQ

2k

≤ n2m

2k

Rabin [1] suggests two ways to lower the probability of error:

• The probability of a wrong output will be lowered by increasing the value ofk. This
will require a larger word-length.

• The probability can also be lowered by using two different irreducible polynomials
P1(t) andP2(t) of the same degreek. The algorithm is then run twice by interleaving
steps, one time withP1(t) and another time withP2(t). Since the error probabilities
are independent, the maximum probability of collision becomes

n2m

22k
.

10

2.1.3 Properties and Characteristics

The general features are specialized for this project (domain inZ2) as follows[2]:

1. A(t) + B(t) ≡ A XOR B

2. A(t)t ≡ A << 1
proof

If A(t) = a1t
m + a2t

m−1 + . . . + am−1t + am,

then A(t)t = (a1t
l + a2t

l−1 + . . . + al−1t + al)t

= a1t
l+1 + a2t

l + . . . + al−1t
2 + alt + 0

3. p1t
k mod P(t) is equivalent to dropping the leading bit offP(t)

proof

If p1 = 0, then p1t
k mod P(t) = 0

If p1 = 1 and P(t) = p1t
k + p2t

k−1 + . . . + pk−1t + pk,

then p1t
k = P(t)− p2t

k−1 − . . .− pk−1t− pk

p1t
k mod P(t) = −p2t

k−1 − . . .− pk−1t− pk

= p2t
k−1 + . . . + pk−1t + pk = P(t)− p1t

k

4. f(A+ B) = f(A) + f(B)

5. f(concat(A,B)) = f(concat(f(A),B))

6. If B is of lengthl, then

f(concat(A,B)) = {A(t)tl + B(t)} mod P(t)

= f(f(A) ∗ f(tl)) + f(B)

7. 1-bit extension

If f([a1, . . . , al]) = (a1t
l + a2t

l−1 + . . . + al−1t + al) mod P(t)

= r1t
k−1 + r2t

k−2 + . . . + rk−1t + rk

then f([a1, . . . , al+1]) = (a1t
l+1 + a2t

l + . . . + al−1t
2 + alt + al+1) mod P(t)

= (t(a1t
l + a2t

l−1 + . . . + al−1t + al) + al+1) mod P(t)

= t(a1t
l + a2t

l−1 + . . . + al−1t + al) mod P(t) + al+1 mod P(t)

= (r1t
k + r2t

k−1 + . . . + rk−1t
2 + rkt + al+1) mod P(t)

= r2t
k−1 + . . . + rk−1t

2 + rkt + al+1︸ ︷︷ ︸
(f([a1,...,al])<<1), inputal+1

+ r1t
k mod P(t)︸ ︷︷ ︸

drop leading bit ofP(t) conditioned onr1︸ ︷︷ ︸
XOR

11

2.2 Irreducible Polynomials

Irreducible polynomial is a topic in the ”finite fields” area and is not within the scope of
this project. However, it would definitely help if a short note about irreducible polynomials
is included in this chapter. A full discussion is too broad to be included so only a simplified
version is included.

2.2.1 Criteria

From literatures[3, 4] of related topics, one can identify the following characteristics of
irreducible polynomials inZ2:

• The Galois FieldZ2 = {0, 1}.

• GivenP(t) = a1t
k + a2t

k−1 + . . . + ak−1t + ak in Z2 of degreek, the following
holds: {

a1 = 1

ai ∈ Z2,∀ i ∈ {1, . . . , k}

• All polynomialsP(t) with no constant term must be factorable.

• P(t) is irreducible ifP(t) does not evaluate to 0 for all elements ofZ2.

For
P(t) = a1t

k + a2t
k−1 + . . . + ak−1t + ak

to be irreducible,one can conclude the following criteria based on the above characteristics:

1. ai ∈ Z2,∀ i ∈ {1, . . . , k}

2. a1 = 1

3. ak = 1

4. P(t) 6= 0,∀ t ∈ Z2 or P(t) = 1,∀ t ∈ Z2

2.2.2 Algorithm for generation

From the criteria set in the previous section, one can see thatP(t) = 1 whent = 0. Thus,
0 is definitely not a zero ofP(t).

Whent = 1, P(t) will evaluate to 0 when there is an even number ofai 6= 0. Thus, there
must be an odd number ofai 6= 0 in order thatP(t) does not evaluate to 0. In other words,
P(t) is irreducible if there is an odd number ofai 6= 0.

12

WhenP(t) is of degreek, it requiresk + 1 bits to represent the polynomial. In other
words, a polynomial of degree 64 needs 65 bits. In C, word length is 32 bits. In order to
make full use of the word size, it is decided to drop the MSB since it is always 1. The
following algorithm is designed for the purpose of generating an irreducible polynomial in
Z2 of degreek (multiples of 32). The result will be stored in 32-bit wordsWj with the
MSB dropped.

Pre-condition : k ≥ 0 and 32 | k.

1. int r := random number ∈
[
0,

⌊
k−1
2

⌋
− 1

]
2. r := 2r + 1

3. A := int Array[0 . . . k − 1], A[i] := 0,∀ i ∈ {0, . . . , k − 1}

4. A[0] := 1

5. For i := 1 . . . r, do

repeat

int j := random number ∈ [0, k − 2]

until A[j + 1] == 0

A[j + 1] := 1

i := i + 1

enddo

6. n := k div 32

7. For j := 1, . . . , n do

Wj := 0

For i := 32 ∗ j − 1, 32 ∗ j − 2, . . . , 32 ∗ j − 32 do

Wj := 2 ∗Wj + A[i]

enddo

enddo

Post conditions :

1. sum :=
∑k div 32

j=1 Wj ∗ 2j−1representsin binary form P(t) with MSB dropped.

2. Wj, j = 1, . . . , n are the n 32-bit words storing sum,

3. P(t) (with MSB dropped) is represented in the form [Wn, . . . ,W2, W1]

13

2.3 An Implementation

Andrei Broder [5] has proposed an implementation scheme for Rabin’s method fork = 64.
Since no mathematical work supporting this scheme is included in the paper, it is difficult
to follow and to extend to other values ofk. In order to allow the readers to appreciate
the scheme and to allow implementers to extend the application to other values ofk, the
mathematical work is reproduced in section 2.3.1.

2.3.1 Mathematical Work

2.3.1.1 Notations

Bits, Bytes and Words

wi 7→ ith bit of W , Wi 7→ ith byte ofW , L[i] 7→ ith word ofL
Given a byteB, B = [b1, b2, . . . , b7, b8]
Given a 32-bit wordW,

W = [w1, w2, . . . , w31, w32] = [W1, W2, W3, W4]

Given a 64-bit valueD,

D = [d1, d2, . . . , d63, d64] = [D1, D2, . . . D7, D8]

D[1] = [D1, D2, D3, D4]

D[2] = [D5, D6, D7, D8]

Given a 96-bit valueL,

L = [l1, l2, . . . , l95, l96] = [L1, L2, . . . L11, L12]

L[1] = [L1, L2, L3, L4]

L[2] = [L5, L6, L7, L8]

L[3] = [L9, L10, L11, L12]

Associated polynomials
If W = [W1, W2, W3, W4], then

W(t)
.
= W1(t)t

24 + W2(t)t
16 + W3(t)t

8 + W4(t)

W1(t)
.
= w1t

7 + w2t
6 + w3t

5 + w4t
4 + w5t

3 + w6t
2 + w7t + w8

W2(t)
.
= w9t

7 + w10t
6 + w11t

5 + w12t
4 + w13t

3 + w14t
2 + w15t + w16

W3(t)
.
= w17t

7 + w18t
6 + w19t

5 + w20t
4 + w21t

3 + w22t
2 + w24t + w24

W4(t)
.
= w25t

7 + w26t
6 + w27t

5 + w28t
4 + w29t

3 + w30t
2 + w31t + w32

Fingerprinting
S = processed string with fingerprintFc = f(S)
W = [Wa, W2, W3, W4] = next word to be processed
Fn = the new fingerprint =f(concat(S,W))

14

2.3.1.2 Fork = deg(P(t)) = 32

Fc = [Fc1, Fc2, Fc3, Fc4]

By property 5 and 6 of section 2.1.3, we have

Fn = f(concat(S,W))

= f(concat(Fc,W))

= (Fc(t)t
32 +W(t)) mod P(t)

= (Fc(t)t
32) mod P(t) +W(t)) mod P(t)

= (Fc1(t)t
56 + Fc2(t)t

48 + Fc3(t)t
40 + Fc4(t)t

32 +W(t)) mod P(t)

= TA(t) + TB(t) + TC(t) + TD(t) + TW (t)

where TA(t) = (Fc1(t)t
56) mod P(t)

TB(t) = (Fc2(t)t
48) mod P(t)

TC(t) = (Fc3(t)t
40) mod P(t)

TD(t) = (Fc4(t)t
32) mod P(t)

TW (t) = W(t) mod P(t)

Thus, Fn
.
= TW XOR TA XOR TB XOR TC XOR TD (2)

2.3.1.3 Fork = deg(P(t)) = 64

Fc = [Fc1, Fc2, . . . Fc7, Fc8] =
[
Fc[1], Fc[2]

]
By property 5 and 6 of section 2.1.3, we have

Fn =f(concat(S,W))

=f(concat(Fc,W))

=(Fc(t)t
32 +W(t)) mod P(t)

=(t32{t32Fc[1](t) + Fc[2](t)}+W(t)) mod P(t)

=(Fc1(t)t
88 + Fc2(t)t

80 + Fc3(t)t
72 + Fc4(t)t

64 + Fc[2](t)t32 +W(t)) mod P(t)

= TA[1](t)t32 + TA[2](t)︸ ︷︷ ︸
from Fc1(t)t88 mod P(t)

+ TB[1](t)t32 + TB[2](t)︸ ︷︷ ︸
from Fc2(t)t80 mod P(t)

+ TC[1](t)t32 + TC[2](t)︸ ︷︷ ︸
from Fc3(t)t72 mod P(t)

+ TD[1](t)t32 + TD[2](t)︸ ︷︷ ︸
from Fc4(t)t64 mod P(t)

+Fc[2](t)t32 +W(t)

=t32{Fc[2](t) + TA[1](t) + TB[1](t) + TC[1](t) + TD[1](t)}
+ {W(t) + TA[2](t) + TB[2](t) + TC[2](t) + TD[2](t)}

=Fn[1](t)t32 + Fn[2](t)

Thus, Fn[1]
.
= Fc[2] XOR TA[1] XOR TB[1] XOR TC[1] XOR TD[1] (3)

Fn[2]
.
= W XOR TA[2] XOR TB[2] XOR TC[2] XOR TD[2] (4)

15

2.3.1.4 Fork = deg(P(t)) = 96

Fc = [Fc1, Fc2, . . . Fc11, Fc12] =
[
Fc[1], Fc[2], Fc[3]

]
By property 5 and 6 of section 2.1.3, we have

Fn =f(concat(S,W)) = f(concat(Fc,W))

=(Fc(t)t
32 +W(t)) mod P(t)

=(t32{t64Fc[1](t) + t32Fc[2](t) + Fc[3](t)}+W(t)) mod P(t)

=(Fc1(t)t
120 + Fc2(t)t

112 + Fc3(t)t
104 + Fc4(t)t

96 + Fc[2](t)t64 + Fc[3](t)t32 +W(t)) mod P(t)

= TA[1](t)t64 + TA[2](t)t32 + TA[3](t)︸ ︷︷ ︸
from Fc1(t)t120 mod P(t)

+ TB[1](t)t64 + TB[2](t)t32 + TB[3](t)︸ ︷︷ ︸
from Fc2(t)t112 mod P(t)

+ TC[1](t)t64 + TC[2](t)t32 + TC[3](t)︸ ︷︷ ︸
from Fc3(t)t104 mod P(t)

+ TD[1](t)t64 + TD[2](t)t32 + TD[3](t)︸ ︷︷ ︸
from Fc4(t)t96 mod P(t)

+ Fc[2](t)t64 + Fc[3](t)t32 +W(t)

=t64{Fc[2](t) + TA[1](t) + TB[1](t) + TC[1](t) + TD[1](t)}
+ t32{Fc[3](t) + TA[2](t) + TB[2](t) + TC[2](t) + TD[2](t)}
+ {W(t) + TA[3](t) + TB[3](t) + TC[3](t) + TD[3](t)}

=Fn[1](t)t64 + Fn[2](t)t32 + Fn[3](t)

Thus, Fn[1]
.
= Fc[2] XOR TA[1] XOR TB[1] XOR TC[1] XOR TD[1] (5)

Fn[2]
.
= Fc[3] XOR TA[2] XOR TB[2] XOR TC[2] XOR TD[2] (6)

Fn[3]
.
= W XOR TA[3] XOR TB[3] XOR TC[3] XOR TD[3] (7)

2.3.1.5 Summary of Operations for Implementation

From works in this section (equations 2 to 7), the following is a summary of the essentials
for the implementation of Rabin’s method.

k = degP(t) 32
Fingerprint Value Fn = [Fn1, Fn2, Fn3, Fn4]
Processes Fn

.
= TW XOR TA XOR TB XOR TC XOR TD

Basic Operations TA(t) = (Fc1(t)t
56) mod P(t)

TB(t) = (Fc2(t)t
48) mod P(t)

TC(t) = (Fc3(t)t
40) mod P(t)

TD(t) = (Fc4(t)t
32) mod P(t)

TW (t) = W(t) mod P(t)

16

k = degP(t) 64
Fingerprint Value Fn = [Fn1, . . . , Fn8] =

[
Fn[1], Fn[2]

]
Processes Fn[1]

.
= Fc[2] XOR TA[1] XOR TB[1] XOR TC[1] XOR TD[1]

Fn[2]
.
= W XOR TA[2] XOR TB[2] XOR TC[2] XOR TD[2]

Basic Operations TA(t) = (Fc1(t)t
88) mod P(t)

TB(t) = (Fc2(t)t
80) mod P(t)

TC(t) = (Fc3(t)t
72) mod P(t)

TD(t) = (Fc4(t)t
64) mod P(t)

k = degP(t) 96
Fingerprint Value Fn = [Fn1, . . . , Fn12] =

[
Fn[1], Fn[2], Fn[3]

]
Processes Fn[1]

.
= Fc[2] XOR TA[1] XOR TB[1] XOR TC[1] XOR TD[1]

Fn[2]
.
= Fn[3] XOR TA[2] XOR TB[2] XOR TC[2] XOR TD[2]

Fn[3]
.
= W XOR TA[3] XOR TB[3] XOR TC[3] XOR TD[3]

Basic Operations TA(t) = (Fc1(t)t
120) mod P(t)

TB(t) = (Fc2(t)t
112) mod P(t)

TC(t) = (Fc3(t)t
104) mod P(t)

TD(t) = (Fc4(t)t
96) mod P(t)

2.3.2 Implementation Issues

To implement the Rabin’s method of fingerprinting, several issues have to be dealt with.
These include the choice of programming language, representation of the irreducible poly-
nomial and the fingerprint value, and implementing the basic operations. These will be
discussed in the subsequent sections.

2.3.2.1 Programming Language

It is decided to use C++ as the programming language for implementing Rabin’s method
for the following reasons:

1. Embedded SQL can be used with C language. This facilitates the access of the
database storing snapshots of webpages and their URLs which may be used as the
dataset for the experiments in this project. Embedded SQL also facilitates the direct
manipulation of data in databases.

2. Language C permits low level programming which is required to implement the Ra-
bin’s method using bit shift and bit-wise exclusive OR operations.

3. Language C++ permits use of codes written in C and also allows object-oriented
programming which may make coding in the project easier.

17

2.3.2.2 Representation

As discussed in section 2.2, the irreducible polynomial with the MSB dropped will be
stored in several 32-bit words. This can also be used for storing the fingerprint value.
When usingP(t) of degreek, k bits will be required to store the fingerprint value.

In order to genrealize the codes, the following scheme is used to store the fingerprint value
f(S) andP(t):

1. The values will be stored inn =
⌈

k
32

⌉
32-bit words.

2. Then 32-bit words will be stored in a data structure (array).

3. The first element of the array is the word containing the LSB.

2.3.2.3 Bit Shift

From properties listed in section 2.1.3, one can see that most of the operations required
for implementing Rabin’s method need low level bits shifting and bitwise exclusive OR.
However, these operations are available to 32 bit words only. Thus, a set of special proce-
dures are required for implementing shifts for word size greater than 32 bits. The following
blocks are written fork > 32 with sWord representing the data structure containing the
word to be operated on.

void longLeftShift(int * sWord, int s) {

int len = number of elements contained in sWord;
int temp;
int mask = 0x00000000;

// generate mask for extracting s bits
for (int i = 0; i < s; i++)

mask = mask << 1 | 0x00000001;

for (int i = len - 1; i > 0; i--) {
// extract s highest bits from lower word
temp = sWord[i - 1] >> (32 - s) & mask;
// insert as s lowest bits in higher word
sWord[i] = sWord[i] << s | temp;

}

sWord[0] = sWord[0] << s
}

18

2.3.2.4 ComputingW(t) mod P(t)

Using the same notation used in section 2.3.1, W is a 32 bit word. ThusW(t) is of degree
31 and we have

W(t) mod P(t) = W(t) ∀k ≥ 32

As we are only dealling with

k ≥ 32

in this project, the above relation holds for all computation in this project.

2.3.2.5 Computingi× t8 mod P(t)

Another commonly found operation in the implementation isi × t8 mod P(t) where0 ≤
i ≤ 255 andi is stored in the lowest byte ofW. This can be achieved by applying property
7 of section 2.1.3 eight times. Once again, allP(t) representations are with MSB dropped.
With sWord andP denotingW andP(t), the code block is as follows:

void multiT8(int * sWord, int * P) {

int len = number of elements contained in sWord;
int needXOR;

for (int i = 0; i < 8; i++) {

// XOR conditioned on MSB
needXOR =
((sWord[len - 1] & 0x80000000) == 0x80000000);

// left shift 1 bit
longLeftShift(sWord, 1);

if((needXOR) {

for (int j = 0; j < len; j++) {

sWord[j] = sWord[j] ∧ P[j];
}

}
}

}

19

2.3.2.6 Computingi× tk−8 mod P(t)

Sincei is an 8-bit value stored in a 32-bit word and the associated polynomial is of degree
7, i × tk−8 mod P(t) can be found by putting the 8 bits as the 8 MSB of the result which
is stored insWord .

void byteShift(int *sWord, int i) {

int len = number of elements contained in sWord;

sWord[len - 1] = i << 24;

for (int j = 0; j < len - 1; j++) {

sWord[j] = 0x00000000;

}

}

2.3.2.7 Pre-computed Table

In section 2.3.1, equations (2) to (7) indicates thatTA, TB, TC andTD values are frequently
used to compute the fingerprint values. Since a byte can only take values between 0 and
255, it is efficient to have all possible values ofTA, TB, TC andTD to be pre-computed
and stored in a table for future reference. Suppose the tables are known asTA, TB, TC and
TD, we find the following relationships:

TD[i] = i ∗ tk mod P(t) = (i ∗ tk−8) ∗ t8 mod P(t)

TC[i] = i ∗ t(k+8) mod P(t) = TD[i] ∗ t8 mod P(t)

TB[i] = i ∗ t(k+16) mod P(t) = TC[i] ∗ t8 mod P(t)

TA[i] = i ∗ t(k+24) mod P(t) = TB[i] ∗ t8 mod P(t)

This can achieved by applying the code blocks discussed in the previous two sections re-
peatedly. Once again, withP denotingP(t), the code block for computing the tables (TA,
TB, TC andTD), which are assumed to be globally accessible, is as follows:

20

void computeTable(int * P) {

int len = number of elements contained in sWord;

for (int i = 0; i < 256; i++) {

for (int j = 0; j < len; j++) {

TD[i][j] = 0;

}
byteShift(TD[i], i); // TD[i] = i × tk−8

multiT8(TD[i], P); // TD[i] = i × t8

for (int j = 0; j < len; j++) {

TC[i][j] = TD[i][j];

}
multiT8(TC[i], P);

for (int j = 0; j < len; j++) {

TB[i][j] = TC[i][j];

}
multiT8(TB[i], P);

for (int j = 0; j < len; j++) {

TA[i][j] = TB[i][j];

}
multiT8(TA[i], P);

}

}

2.3.2.8 Fingerprinting (concatenating 4-character string)

According to work in section 2.3.1.5, each cycle of computation will take on 4 bytes. Sup-
pose the next 4 characters to be concatenated are contained in 32-bit word W as [W1, W2,
W3, W4]. Assuming that the previous fingerprint value is stored insWord andP(t) rep-
resentated byP, the function to compute the new fingerprint will be as shown below based
on equations 2 to 7 and the assumption that the tables (TA, TB, TC andTD) are globally
accessible:

21

void fp4(int * sWord, char W1, char W2, char W3,
char W4) {

int len = number of elements contained in sWord;
int f1 = sWord[len - 1] >> 24 & 0xffff;
int f2 = sWord[len - 1] >> 16 & 0xffff;
int f3 = sWord[len - 1] >> 8 & 0xffff;
int f4 = sWord[len - 1] & 0xffff;
int W = (((W | W1) << 8 | W2) << 8 | W3) << 8 |
W4;

for (int j = len - 1; j > 0; j--) {
sWord[j] = sWord[j - 1] ∧ TA[f1][j] ∧
TB[f2][j] ∧ TC[f3][j] ∧ TD[f4][j];

}
sWord[0] = W ∧ TA[f1][0] ∧ TB[f2][0] ∧ TC[f3][0]
∧ TD[f4][0];

}

2.3.2.9 Fingerprinting (concatenating 1 character)

The sitauation that the end chunk of a string is not a 32-bit word can be handled by dealing
with 1 character at a time using property 7 of section 2.1.3. Code block as follows:

void fp1(int * sWord, int * P, char S) {

int len = number of elements contained in sWord;
int W, needXOR;

for (int i = 0; i < 8; i++) {

needXOR = (sWord[len - 1] & 0x80000000);
W = S & 0x80;
S = S << 1;
longLeftShift(sWord, 1);
sWord[0] = sWord[0] | (W >> 7);
if (needXOR) {

for (int j = len - 1; j >= 0; j --) {
sWord[j] = sWord[j] ∧ P[j];

}
}

}
}

22

2.3.3 Implementation Scheme

This scheme is designed fork ≥ 32 based on discussions in the previous sections. The
source codes of this implementation is included in the section 7.1.

Pre-condition : S is a non-zero length character string

1. Obtain P(t) of degree k and store as P

2. computeTable

3. set F = 0

4. int n := len(S) div 4

5. For i := 1 . . . n, do

Perform
fp4(*F, S[4*i-4], S[4*i-3], S[4*i-2], S[4*i-1])

enddo

6. For each of the character c in the remaining chunk,
do

Perform fp1(F, P, c)

enddo

Post condition : f(S) is stored as F

23

24

Chapter 3

Hashing Algorithms

3.1 General Considerations

In this project, result of using Rabin’s method will be compared with those using has-
ing functions. Four schemes have been chosen after evaluating several published hashing
methods. they are described in the following sections.

3.2 Scheme djb2

Dan Bernstein [6] reported this algorithm many years ago. The code block is included be-
low for reference. The codes are self-explanatory.

unsigned int djb2(char* str) {

unsigned int hash = 5381;
int c;

while (c = *str++)
hash = ((hash << 5) + hash) + c;
// hash * 33 + c

return hash;
}

25

3.3 Scheme sdbm

It is reported [6] that this algorithm is created for the sdbm database library. The underlying
function is

hash(i) = hash(i− 1) ∗ 65599 + str[i]

unsigned int sdbm(char* str) {

unsigned int hash = 0; int c;

while (c = *str++)
hash = c + (hash << 6) + (hash << 16) - hash;

return hash;
}

3.4 Horner’s Rule

Bruno Preiss [7] adopted the Horner’s rule1 to write the following hashing function.

unsigned int hhash(char* str) {

unsigned int hash = 0;
int c;

while (c = *str++)
hash = hash << 7 ∧ c;

return hash;
}

3.5 Conversion function url2pid()

This is a conversion function used in the database storing the target dataset for converting
a character string into an 8 byte character string used as identifying key. The codes can be
found in the section 7.2.

1By Horner’s rule, the valueresult =
∑n

i=0 aix
i can be found by the algorithm:

result :=an; for i := n - 1,. . . ,1,0 result := result * x +ai

26

Chapter 4

The Experiment

4.1 Test Objects

The experiment is designed to find out the following:

I the dependency of the percentage of collisions (distinct strings with the same finger-
print) and the choice ofP(t) of the same degreek

I the relationship between the percentage of collisions (distinct strings with the same
fingerprint) and the degree ofP(t)

I the effectiveness of using Rabin’s method with that of using hashing functions

I the efficiency of Rabin’s method in terms of CPU time required as compared with
the time required using various hashing fuctions

4.2 Outline of Experiment

One of the tables stored in the research databases1 contains a collection of the URL of more
than 23.5 million web pages. These URLs will be the target strings to be fingerprinted. The
records are also recorded in a text file with each record contained in one single line of text.

Each line of text contains data in the order as follows:

name of attributes data format descriptions
pid char(8) page identity
url char(128) first part of the URL
url2 char(872) remaining part of the URL

1At the time of the project, it is located at /usr/bluesky-r1/cmput690/db2/

27

4.3 Details of the Experiment

The following tests will be performed on the dataset:

1. For each S of the URLs, findf(S) using variousP(t) of degree 32, 64 and 96.

2. For each S of the URLs, find djb2(S)

3. For each S of the URLs, find sdbm(S)

4. For each S of the URLs, find hhash(S)

5. For each S of the URLs, find url2pid(S)

6. Each of the finerprints and hash values obtained is stored in a separate text file

7. For each of the above tests, log the CPU time required

8. For each of the above tests, find out the number of duplicate values for distinct URLs
using the sort function

28

Chapter 5

Results and Analyses

5.1 Test Results

When the compiled program is executed, results were recorded in various output log files.
These files are processed and merged into one single result file. The file contents are
included below for analysis. In order to have a fair comparison in time efficiency, only
the CPU time for each process is measured.

Size of dataset = 23743961

**

The polynomial is of degree 32
Irreducible polynomial used is 1 4D96487B
Total CPU time for 32 bit fingerprinting = 1617.080000 seconds

Size after removing duplicates = 23678578 f32_1.txt

**

The polynomial is of degree 32
Irreducible polynomial used is 1 2DC7EEB3
Total CPU time for 32 bit fingerprinting = 1583.680000 seconds

Size after removing duplicates = 23678346 f32_2.txt

**

The polynomial is of degree 32
Irreducible polynomial used is 1 1100C021
Total CPU time for 32 bit fingerprinting = 1504.040000 seconds

29

Size after removing duplicates = 23678200 f32_3.txt

**

The polynomial is of degree 32
Irreducible polynomial used is 1 53BCFEDB
Total CPU time for 32 bit fingerprinting = 1506.460000 seconds

Size after removing duplicates = 23678797 f32_4.txt

**

The polynomial is of degree 32
Irreducible polynomial used is 1 00401003
Total CPU time for 32 bit fingerprinting = 1404.200000 seconds

Size after removing duplicates = 23678626 f32_5.txt

**

The polynomial is of degree 64
Irreducible polynomial used is 1 460C8808 10028043
Total CPU time for bit fingerprinting = 2005.600000 seconds

Size after removing duplicates = 23743961 f64_1.txt

**

The polynomial is of degree 64
Irreducible polynomial used is 1 7523C013 A96DD7FF
Total CPU time for 64 bit fingerprinting = 1775.430000 seconds

Size after removing duplicates = 23743961 f64_2.txt

**

The polynomial is of degree 64
Irreducible polynomial used is 1 7FABFBF6 5FFFFEFF
Total CPU time for 64 bit fingerprinting = 1804.740000 seconds

Size after removing duplicates = 23743961 f64_3.txt

**

The polynomial is of degree 64
Irreducible polynomial used is 1 01751A98 4D90AF27

30

Total CPU time for 64 bit fingerprinting = 1846.320000 seconds

Size after removing duplicates = 23743961 f64_4.txt

**

The polynomial is of degree 64
Irreducible polynomial used is 1 77FFFFFF FFDFFFBF
Total CPU time for 64 bit fingerprinting = 1884.140000 seconds

Size after removing duplicates = 23743961 f64_5.txt

**

The polynomial is of degree 96
Irreducible polynomial used is 1 0200100A A0300111 2125200D
Total CPU time for bit fingerprinting = -1934.287296 seconds

Size after removing duplicates = 23743961 f96_1.txt

**

The polynomial is of degree 96
Irreducible polynomial used is 1 6FF7FFFF FFFE797F FFFFFFFF
Total CPU time for 96 bit fingerprinting = 1960.210000 seconds

Size after removing duplicates = 23743961 f96_2.txt

**

The polynomial is of degree 96
Irreducible polynomial used is 1 62500258 258182C6 D985013D
Total CPU time for 96 bit fingerprinting = 1888.950000 seconds

Size after removing duplicates = 23743961 f96_3.txt

**

The polynomial is of degree 96
Irreducible polynomial used is 1 7FFFFFFF FBFFFFFF FFEBFFFF
Total CPU time for 96 bit fingerprinting = 1872.290000 seconds

Size after removing duplicates = 23743958 f96_4.txt

**

The polynomial is of degree 96

31

Irreducible polynomial used is 1 01040008 00466C86 04001109
Total CPU time for 96 bit fingerprinting = 1989.230000 seconds

Size after removing duplicates = 23743961 f96_5.txt

**

Hashing result
Hashing algorithm used : djb2
Total CPU time for hashing = 1068.070000 seconds

Size after removing duplicates = 23677811 hash1.dat

**

Hashing result
Hashing algorithm used : sdbm
Total CPU time for hashing = 1134.640000 seconds

Size after removing duplicates = 23678248 hash2.dat

**

Hashing result
Hashing algorithm used : Horner’s rule
Total CPU time for hashing = 1273.920000 seconds

Size after removing duplicates = 724143 hash3.dat

**

Hashing result
Hashing algorithm used : url2pid
Total CPU time for hashing = 2121.483520 seconds

Size after removing duplicates = 23736299 dhash.dat

**

32

5.2 Analyses

5.2.1 Expected Errors

Given the context of this experiment, the number of collisions expected in each of the
experiments can be calculated according to the bound of error (2.1.2) proposed by Rabin
in his paper [1] as follows:

n = number of character strings = 23, 743, 961

m = maximum length of strings in bits = 8× 1, 000 = 8, 000

Fork = 32, P r ≤ 1.05× 1011%, maximum collisions= 23, 743, 961

Fork = 64, P r ≤ 24.45%, maximum collisions= 5, 805, 368

Fork = 96, P r ≤ 5.69× 10−9%, maximum collisions= 1.35× 10−3 ≈ 0

In casek = 32, the bound of error is meaningless since it is over 1. This is an indication
that the value ofk should be changed according to the expected total number of candidates
for fingerprinting in order to have a quality output.

5.2.2 Actual Results

As the results file is lengthy, the data are processed and organized into tabular form for easy
reference.

algorithm run CPU time (sec) collisions % collisions
32-bit fingerprinting 1 1,617.08 65,383 0.275%

2 1,583.68 65,615 0.276%
3 1,504.04 65,761 0.277%
4 1,506.46 65,164 0.274%
5 1,404.20 65,335 0.275%

64-bit fingerprinting 1 2,005.60 0 0%
2 1,775.43 0 0%
3 1,804.74 0 0%
4 1,846.32 0 0%
5 1,884.14 0 0%

96-bit fingerprinting 1 -1,934.29 0 0%
2 1,960.21 0 0%
3 1,888.95 0 0%
4 1,872.29 2 ≈ 0%
5 1,989.23 0 0%

hashing - djb2 1 1,068.07 66,150 0.279%
hashing - sdbm 1 1,134.64 65,713 0.277%
hashing - Horner’s rule 1 1,273.92 23,019,818 96.95%
hashing - url2pid 1 2,121.48 7,662 0.032%

33

5.2.3 Comparisons

5.2.3.1 Note of abnormality

The negative time recorded for the first run with 96 bits fingerprinting method is due to the
fact that the codes for that run was not written with the expectation of counter overflow.
This was fixed in the subsequent runs.

5.2.3.2 Collisions

All schemes used in this project are performing well with the exception of the Horner’s rule
which is therefore not included in this discussion any more. As expected, the fingerprint
methods using 64 bits or more give promising results. Fingerprint method employing only
32 bits is simliar to the other hashing functions and thus has errors of the same order of
magnitude as the others. The url2pid algorithm seems to be edging the other functions of
similar base.

5.2.3.3 Time efficiency

While the url2pid algorithm gives a better result (among those 32-bit based algorithms), it is
the slowest of all. The fingerprint methods perform consistently independent of the degree
of the irreducible plynomial. Of the 32-bit based functions, the two hashing functions
namely djb2 and sdbm are the most efficient ones. This explains why they have good
reputation within the community.

5.2.4 Fingerprint method

The following observations can be made from the tabulated test results:

1. The number of collisions is independent of the choice of the irreducible polynomial
used for hashing provided that they are of the same degree

2. The expression for estimating the upper bound of errors is not violated in the conte-
text of the experiment.

3. The performance of the method improves with the increase of the degree of the irre-
ducible polynomial used

34

Chapter 6

Conclusion

6.1 Conclusions

The Rabin’s method of fingerprinting using irreducible polynomials has been studied and
implemented. As a result of the implementation and experiments with a given dataset, the
followings are verified:

1. The result of application of the Rabin’s method is independent of the choice of irre-
ducible polynomial

2. The probability of error (different strings having the same fingerprint) decreases with
the increase of the degree of the irreducible polynomial used

3. The probability of error is bounded by the expression provided in his paper [1] in
which Rabin released this fingerprinting method

6.2 Related and Future Work

6.2.1 Related Work

The famous MD4 and MD5 message-digest algorithms are direct applications of this fin-
gerprinting method. Both algorithms employ 128-bit fingerprinting with MD4 being faster.
They use padding at the end of the string to avoid single character concatenation. Each
string is padded to a length equal to a multiple of 512 bits. A 16-word (32 bit word) block
is processed each cycle.

35

6.2.2 Future Work

Due to the constraint of resources, only a limited number of runs have been performed. To
conform to the Principle of Large Numbers, more runs should be executed to obtain results
to verify the above observations made in the conclusion section.

Besides, 2 collisions were found in the fourth run using polynomial of degree 96, it is not
expected. The situation should be examined to find out the cause of the problem. It would
be good to know if the errors are just coincidence or erratic program codes or some other
reasons. However, this cannot be done in time to meet the submission deadline of this
project.

36

Chapter 7

Source Codes

7.1 Source Codes for Fingerprinting

/***
* Authors : Calvin Chan & Haihua Lu
* Course Project: CMPUT 690 -- Advanced Database System, December, 2001
* Instructor : Dr. Davood Rafiei
*
* Filename : fingerPrint.cc
*
* Purpose : to run finger printing test on pages.txt
*
* Usage : fp <degree> <output file name> < input stream
* if no output file name is given, "outfp.txt" will be used
*
***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream.h>
#include <math.h>
#include <time.h>

/***** Type Definitions *****/
typedef unsigned int usInt;

/***** Forward Declarations *****/

// for generating irreducible polynomial of degree k
// wCount being the number of 32 bit words required to hold P(t)
usInt* generateIrreduciblePoly(short k, short *wCount);

// for generating pre-computed table TA, TB, TC, TD
void computTable

37

(usInt **TA, usInt **TB, usInt **TC, usInt **TD, usInt *P, short wCount);

// for left shifting values s bits
void longLeftShift(usInt *words, short wCount, short s);

// for computing i*tˆ8 mod P(t)
void multiT8(usInt *words, usInt *P, short wCount);

// for computing i*tˆ(k-8) mod P(t)
void byteShift(usInt *words, short wCount, short value);

// for computing f(concat(S, 1 byte))
void fp1(usInt *fP, usInt *P, short wCount, char s);

// for computing f(concat(S, 4 bytes))
void fp4(usInt *fP, short wCount, short s1, short s2, short s3, short s4);

// return a random number in the range [0, 1]
double getArandom();

/***** Global Variables *****/
usInt **TA, **TB, **TC, **TD;

/***** Application Entry *****/
int main(int argc, char * argv[]) {

// setting up
FILE* logFile;
FILE* outFile;
char* fName;
short wCount, i, j, k;
usInt* P;

// open the log and output files to record statistics and results
if ((logFile = fopen("result.log", "a")) == NULL) {

fprintf(stderr, "Error opening log file, exiting...\n");
exit(1);

};

fName = argc > 2 ? strdup(argv[2]) : strdup("outfp.dat");
if ((outFile = fopen(fName, "w")) == NULL) {

fprintf(stderr, "Error opening output file, exiting...\n");
exit(1);

};

// retrieve the degree for P from parameter, default to 64
// and generate the polynomial, write to log file
k = argc > 1 ? atoi(argv[1]) : 64;

P = generateIrreduciblePoly(k, &wCount);

fprintf(logFile, "\nThe polynomial is of degree %d\n", k);
fprintf(logFile, "Irreducible polynomial used is ");
for (j = wCount - 1; j >= 0; j--) {

38

for (i = 28; i >= 0; i -= 4) fprintf(logFile, "%X", P[j] >> i & 0xf);
fprintf(logFile, " ");

}
fprintf(logFile, "\n");

// allocate memory for tables and generate tables
TA = (usInt **)malloc(256*sizeof(usInt*));
TA[0] = (usInt *)malloc(256*wCount*sizeof(usInt));

TB = (usInt **)malloc(256*sizeof(usInt*));
TB[0] = (usInt *)malloc(256*wCount*sizeof(usInt));

TC = (usInt **)malloc(256*sizeof(usInt*));
TC[0] = (usInt *)malloc(256*wCount*sizeof(usInt));

TD = (usInt **)malloc(256*sizeof(int*));
TD[0] = (usInt *)malloc(256*wCount*sizeof(usInt));

if((!TA)||(!TB)||(!TC)||(!TD)){
fprintf(stderr, "Memory allocate error in main--1\n");
exit(1);

}

if((!TA[0])||(!TB[0])||(!TC[0])||(!TD[0])){
fprintf(stderr, "Memory allocate error in main--2\n");
exit(1);

}

computTable(TA, TB, TC, TD, P, wCount);

// actual process
int n, len;
char pid[8];
char url[1001];
char url2[873];
usInt* fP = (usInt *)malloc(wCount*sizeof(usInt)); // for storing fingerprint

if(!fP) {
fprintf(stderr, "Memory allocate error in main--3\n");
exit(1);

}

// clean up for next round
pid[0] = ’\0’;
url[0] = ’\0’;
url2[0] = ’\0’;

// do some statisitics on time used
double totalTime = 0;
clock_t t0 = clock();
long record = 0;

// loop until the file is done
while (scanf("\"%[ˆ\"]\",\"%[ˆ\"]\",\"%s\n", pid, url, url2) > 0) {

39

url2[strlen(url2)-1] = ’\0’;
strcat(url, url2);
record++;

for (j = 0; j < wCount; j++) fP[j] = 0;

len = strlen(url);
n = len / 4;

for (j = 1; j <= n; j++) {
fp4(fP, wCount, url[4*j-4], url[4*j-3], url[4*j-2], url[4*j-1]);

}

for (j = 4*n; j < len; j++) {
fp1(fP, P, wCount, url[j]);

}

// output the result
for (j = wCount - 1; j >= 0; j--) {

fprintf(outFile, "%X ", fP[j]);
}
fprintf(outFile, "\n");

// clean up for next round
pid[0] = ’\0’;
url[0] = ’\0’;
url2[0] = ’\0’;

if(record % 1000000 == 0){
clock_t t1 = clock();
totalTime = totalTime + (double)(t1-t0)/CLOCKS_PER_SEC;
t0 = clock();

}

}

clock_t t1 = clock();
totalTime = totalTime + (double) (t1 - t0) / CLOCKS_PER_SEC;
fprintf(logFile,

"Total CPU time for %d fingerprinting = %f seconds\n", k, totalTime);

fprintf(logFile, "\n**\n");

free(P); free(fP);
free(TA[0]); free(TB[0]); free(TC[0]); free(TD[0]);
free(TA); free(TB); free(TC); free(TD);

// close the files
fclose(logFile);
fclose(outFile);

return 1;
}

40

/***** Methods *****/
usInt * generateIrreduciblePoly(short k, short *size) {

// precondition
if((k<0)||(k % 32 != 0)){

cout<<"Error in Generating Irreducible Polynomial, k - value"<<endl;
exit(1);

}

//Seed the random-number generator with current time so that
//the numbers will be different every time we run.
srand((unsigned)time(NULL));
double temp;
for(int n=0; n<5; n++) {
//I found the first generated random does not change,
//so I choose the fifth one

temp = getArandom(); //temp is [0, 1)
}
int r = (int) (temp * (floor((k-1)/2.0)-1));
r = 2*r + 1; // r is a random odd value within [1, k-2]

usInt *A;//A array is going to store the poly. coefficents.
A = (usInt *)malloc(k*sizeof(usInt)); //allocate memory
if(!A) {

cout<<"Memory allocate error for Irreducible Polynomial--1"<<endl;
exit(1);

}

//initialize the array
A[0] = 1; //A[k-1] = 1;
short i;

for(i=1; i<= k-1; i++) // should be i <= k - 1 instead of i < k - 1
A[i] = 0;

for(i=1; i<=r; i++){
while(1){

temp = getArandom(); //temp is [0, 1)
short j = (short)(temp * (k-2)); // j is [0, k-2)

if(A[j+1]==0){
A[j+1] = 1;
break;

}
}//end of while loop

}//end of for i loop

*size = k/32;

usInt *W;
W = (usInt *)malloc((*size)*sizeof(usInt)); //allocate memory
if(!W) {

cout<<"Memory allocatet error for Irreducible Polynomial--2"<<endl;
exit(1);

41

}

for(short j=0; j<*size; j++){
W[j] = 0;
for(i=32*(j+1)-1; i>=32*(j+1)-32; i--)

W[j] = 2*W[j] + A[i];
}
return W;

}

void computTable
(usInt **TA, usInt **TB, usInt **TC, usInt **TD, usInt *P, short wCount) {

short i;
for(i=1; i<256; i++) {

TA[i] = TA[i-1] + wCount; //allocate address
TB[i] = TB[i-1] + wCount; //allocate address
TC[i] = TC[i-1] + wCount; //allocate address
TD[i] = TD[i-1] + wCount; //allocate address

}

for(i=0; i<256; i++) {
for(short j=0; j<wCount; j++) {

TA[i][j] = 0; //initialize
TB[i][j] = 0; //initialize
TC[i][j] = 0; //initialize
TD[i][j] = 0; //initialize

}
}

for(i=0; i<256; i++) {
short j;
for(j=0; j < wCount; j++) {

TD[i][j] = 0;
}

byteShift(TD[i], wCount, i);

multiT8(TD[i], P, wCount);

for(j=0; j < wCount; j++) {
TC[i][j] = TD[i][j];

}

multiT8(TC[i], P, wCount);

for(j=0; j < wCount; j++) {
TB[i][j] = TC[i][j];

}

multiT8(TB[i], P, wCount);

for(j=0; j < wCount; j++) {
TA[i][j] = TB[i][j];

42

}

multiT8(TA[i], P, wCount);

}
}

void multiT8(usInt *words, usInt *P, short size)
{

int needXOR;
short i, j;

for(i=0; i<8; i++){

// XOR is needed only when the MSB = 1
needXOR = ((words[size-1] & 0x80000000) == 0x80000000);

// left shift 1 bit
longLeftShift(words, size, 1);

if (needXOR){
for(j=size-1; j>=0; j--){

words[j] = words[j] ˆ P[j];
}

}
}

}

void byteShift(usInt *words, short len, short value)
{

short i;
usInt temp = value;
words[len - 1] = value << 24;

for(i = len - 2; i >= 0; i--){
words[i] = 0x00000000;

}
}

void longLeftShift(usInt *words, short len, short s)
{

usInt temp;
usInt mask = 0x00000000;
short i;
for (i = 0; i < s; i++) //create a mask for s LSB

mask = mask << 1 | 0x00000001;

for (i = len - 1; i > 0; i--) {
temp = words[i-1] >> (32 - s) & mask; // get a MSB from low
words[i] = words[i] << s | temp; // set as s LSB in high

}

words[0] = words[0] << s; // shift the low word
}

43

void fp1(usInt *fP, usInt *P, short wCount, char s) {

usInt W;
int needXOR;
short i, j;

for (i = 0; i < 8; i++) {
W = s & 0x80; // retrieve the MSB of s
s = s << 1; // shift for next round
needXOR = ((fP[wCount-1] & 0x80000000) == 0x80000000);

longLeftShift(fP, wCount, 1);

fP[0] = fP[0] | (W >> 7);

if (needXOR) {
for(j = wCount - 1; j >= 0; j--) {

fP[j] = fP[j] ˆ P[j];
}

}
}

}

void fp4(usInt *fP, short wCount, short s1, short s2, short s3, short s4) {

usInt W = 0;
short i, j;
unsigned short f1, f2, f3, f4;

W = (((W | s1) << 8 | s2) << 8 | s3) << 8 | s4;

f1 = (fP[wCount - 1] >> 24) & 0xff;
f2 = (fP[wCount - 1] >> 16) & 0xff;
f3 = (fP[wCount - 1] >> 8) & 0xff;
f4 = fP[wCount - 1] & 0xff;

for(j = wCount - 1; j > 0; j--) {
fP[j] = fP[j-1] ˆ TA[f1][j] ˆ TB[f2][j] ˆ TC[f3][j] ˆ TD[f4][j];

}
fP[0] = W ˆ TA[f1][0] ˆ TB[f2][0] ˆ TC[f3][0] ˆ TD[f4][0];

}

double getArandom() {
return rand()/(double)RAND_MAX;

}

44

7.2 Source Codes for “url2pid”

The source codes are contained in a file named “functions.c”.

#include <string.h>
#include <math.h>
#include <sqludf.h>

double hash1(char *str) {
/*

Hash function for chaning urls into PIDs.
*/

double val = 0;
int i = 0;
char *ptr,*ptr2;

ptr = str;
if (*str) ptr++;
ptr2 = ptr;
if (*ptr) ptr2++;
while (*str) {

val += pow(10,i%12)*(pow(abs(*str),3) + (*ptr)*(*ptr) + abs(*ptr2));
str++;
ptr++;
if (*ptr2) ptr2++;
i++;
val = fmod(val,pow(10,18));

}

return val;
}

double hash2(char *str) {
/*

Secondary hash function for turning urls into PIDs.
*/

double val = 0;
double pro = 1;
int i;

while (*str) {
for (i=1;(i<=5) && (*str);i++) {

pro *= abs(*str);
str++;

}
val += pro;
val = fmod(val,pow(10,17));
pro = 1;

}
return val;

}

double get_pid(char *url,char *pid, int n) {

45

/*
Takes the url and generates a pid using a hash function. The pid is
returned through the parameter as a string. The double value of the
pid is also returned as the return value.

*/

char temp[16];
double val = 0;
double val2,dbl;
int i = 0;

while (n > 1) {
val += hash2(url);
n--;

}

val += hash1(url);
val = fmod(val,pow(93,8)); /* 93ˆ8 combinations, want the number in

less than
that */

val2 = val;

for (i=7;i>=0;i--) {
dbl = fmod(val,93);
dbl = floor(dbl);
pid[i] = (int)dbl;
pid[i] += 33;
if (pid[i] == ’"’) pid[i] = 126; /* pid’s can’t contain " */
val /= 93;

}
pid[8] = 0;

return val2;
}

/* returns the first pids */
void url2pid1 (

char *url,/* input */
char *pid,/* output */
short *nullUrl,/* indicator variable for the input */
short *nullPid,/* indicator variable for the output */
char *sqlstate,
char *fnName,
char *specificName,
char *message
)

{
int n = 1;

if (*nullUrl) {
*nullPid = -1;
return;

}

46

get_pid(url, pid, n);

return;
}

/* returns a table of pids */
void url2pids (

char *url, /* input */
char *pid, /* output */
short *nullUrl, /* indicator variable for the input */
short *nullPid, /* indicator variable for the output */
char *sqlstate,
char *fnName,
char *specificName,
char *message,
SQLUDF_SCRATCHPAD *scratchpad,/* declared in sqludf.h */
SQLUDF_CALL_TYPE *calltype /* declared in sqludf.h */
)

{
int *pad = (int *)scratchpad->data; /* scratchpad */

switch (*calltype) {
case SQL_TF_OPEN: *pad = 0; break;
case SQL_TF_FETCH:

while (*pad < 3) {
(*pad)++;
get_pid(url, pid, *pad);
strcpy(sqlstate, "00000");
return;

}
strcpy(sqlstate, "02000");
break;

case SQL_TF_CLOSE: break;
}

}

47

48

Bibliography

[1] Michael O. Rabin. Fingerprinting by random polynomials. Report TR-15-81, Center
for Research in Computing Technology, Harvard University, 1981.

[2] Michael O. Rabin. Discovering repetitions in strings. In A. Apostolico and Z. Galil,
editors,Combinatorial Algorithms on Words. Springer-Verlag, 1985.

[3] Bill Cherowitzo. http://www-math.cudenver.edu/˜wcherowi/courses/finflds.html. web-
page.

[4] Michael O. Rabin. Probabilistic algorithms in finite fields. InSIAM Journal of Com-
puting, volume 9, pages 273–280, 1980.

[5] Andrei A. Broder. Some applications of Rabin’s fingerprinting method. In A. De San-
tis R. Capocelli and U. Vaccaro, editors,Sequences II: Methods in Communications,
Security, and Computer Science. Springer-Verlag, 1993.

[6] http://www.cs.yorku.ca/˜oz/hash.html. webpage.

[7] Bruno Preiss. http://www.pads.uwaterloo.ca/bruno.preiss/books/opus5/html
/page220.html#eqnhashingstring. webpage.

49

